Integral Solutions - Integral Three Barrier Probabilities

Gary Schurman MBE, CFA

We want to find the probability that a Brownian motion that starts out at a value of zero at time zero, falls below some minimum barrier value y over the time interval $[0, t]$, and ends up above some threshold value x at time t given the following constraints...

$$
\begin{equation*}
\text { Constraints : barrier } y<0 \ldots \text { and... threshold } x \geq y \tag{1}
\end{equation*}
$$

Setting Up The Problem

We will define the variables μ to be expected return mean, the variable ϕ to be the dividend yield, and the variable σ to be expected return volatility. We will define the variables α and v to be the mean and variance, respectively, of the Brownian motion over the time interval $[0, T]$. The equations for the Brownian motion's mean and variance are...

$$
\begin{equation*}
\alpha=\left(\mu-\phi-\frac{1}{2} \sigma^{2}\right) t \ldots \text { and } \ldots v=\sigma^{2} t \tag{2}
\end{equation*}
$$

We will define the variable m to be the minimum value of the Brownian motion W_{t} over the time interval $[0, t]$ and the variable w to be the ending value of the Brownian motion at time t. We will define the function $a(m, w)$ to be the joint distribution function of m and w, which is...

$$
\begin{equation*}
a(m, w)=\frac{2(w-2 m)}{v \sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{3}
\end{equation*}
$$

We will define the variable x to be the threshold value and the variable y to be the barrier value. Using Equation (3) above the equation for the probability that (1) the minimum value of W_{t} is less than or equal to the barrier value over the time interval $[0, T]$ and (2) the ending value of W_{t} is greater than or equal to the threshold value at time T is...

$$
\begin{equation*}
\operatorname{Prob}\left[\operatorname{Min}\left(W_{t}\right) \leq y, W_{T} \geq x\right]=\int_{w=x}^{w=\infty} \int_{m=-\infty}^{m=y} a(m, w) \delta m \delta w \tag{4}
\end{equation*}
$$

To solve the double integral in Equation (4) abov we need the anti-derivative of the function $a(m, w)$ with respect to the barrier variable m. The antiderivative of the function $a(m, w)$ is $b(m, w)$, which is defined as follows... [1]

$$
\begin{equation*}
b(m, w)=\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \ldots \text { such that... } \frac{\delta b(m, w)}{\delta m}=a(m, w) \tag{5}
\end{equation*}
$$

Solution To The Inner Integral

We will define the variable I to be the inner integral of the double integral as defined by Equation (4) above. This statement in equation form is...

$$
\begin{equation*}
I=\int_{m=-\infty}^{m=y} a(m, w) \delta m \tag{6}
\end{equation*}
$$

Using Equation (5) above the solution to Equation (6) above is...

$$
\begin{equation*}
I=\int_{m=-\infty}^{m=y} a(m, w) \delta m=b(m, w)\left[_{m=-\infty}^{m=y}\right. \tag{7}
\end{equation*}
$$

Note that using Equation (5) above we can rewrite Equation (7) above as...

$$
I=\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\}\left[\begin{array}{l}
m=-\infty \tag{8}\\
m=y \\
\hline
\end{array}\right.
$$

The solution to the lower bound of the integral in Equation (8) above is...

$$
\begin{equation*}
\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 \times-\infty-w)^{2}\right\}=0 \ldots \text { because } \ldots \lim _{m \rightarrow-\infty} \operatorname{Exp}\{m\}=0 \tag{9}
\end{equation*}
$$

The solution to the upper bound of the integral in Equation (8) above is...

$$
\begin{equation*}
\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 \times y-w)^{2}\right\} \tag{10}
\end{equation*}
$$

Using Equations (9) and (10) above the solution to Equation (8) above is...

$$
\begin{align*}
I & =\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 y-w)^{2}\right\}-0 \\
& =\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}\left(4 y^{2}-4 w y+w^{2}\right)\right\} \\
& =\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}\left(-2 \alpha w+\alpha^{2}+4 y^{2}-4 w y+w^{2}\right)\right\} \tag{11}
\end{align*}
$$

We will make the following definition...

$$
\begin{equation*}
(w-\alpha-2 y)^{2}=w^{2}-2 \alpha w+\alpha^{2}+4 y^{2}-4 w y+4 \alpha y \tag{12}
\end{equation*}
$$

Using the definition in Equation (12) above we can rewrite Equation (11) above as...

$$
\begin{align*}
I & =\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}\left((w-\alpha-2 y)^{2}-4 \alpha y\right)\right\} \\
& =\operatorname{Exp}\left\{\frac{2 \alpha y}{v}\right\} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(w-\alpha-2 y)^{2}\right\} \tag{13}
\end{align*}
$$

Solution To The Outer Integral

Using Equation (13) above we can rewrite probability Equation (4) above as...

$$
\begin{equation*}
\operatorname{Prob}\left[\operatorname{Min}\left(W_{t}\right) \leq y, W_{T} \geq x\right]=\int_{w=x}^{w=\infty} I \delta w=\int_{w=x}^{w=\infty} \operatorname{Exp}\left\{\frac{2 \alpha y}{v}\right\} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(w-\alpha-2 y)^{2}\right\} \delta w \tag{14}
\end{equation*}
$$

Not that we can rewrite Equation (14) above as...

$$
\begin{equation*}
\operatorname{Prob}\left[\operatorname{Min}\left(W_{t}\right) \leq y, W_{T} \geq x\right]=\operatorname{Exp}\left\{\frac{2 \alpha y}{v}\right\} \int_{w=x}^{w=\infty} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(w-(\alpha+2 y))^{2}\right\} \delta w \tag{15}
\end{equation*}
$$

We will define the function $\operatorname{CNDF}(\mathrm{z})$ to be the cumulative normal distribution function were the random variable z is normally-distributed with mean $=[$ mean $]$ and variance $=[$ variance $]$. The equation for this function is...

$$
\begin{equation*}
C N D F(x, \text { mean, variance })=\int_{z=-\infty}^{z=x} \sqrt{\frac{1}{2 \pi} \times \frac{1}{\text { variance }}} \times \operatorname{Exp}\left\{-\frac{1}{2} \times \frac{1}{\text { variance }} \times(z-\text { mean })^{2}\right\} \delta z \tag{16}
\end{equation*}
$$

The Excel function for Equation (16) above is...

$$
\begin{equation*}
C N D F(x, \text { mean }, \text { variance })=N O R M D I S T(x, \text { mean }, \sqrt{\text { variance }}, \text { True }) \tag{17}
\end{equation*}
$$

Using the function definition in Equation (16) above the solution to Equation (15) above is...

$$
\begin{equation*}
\operatorname{Prob}\left[\operatorname{Min}\left(W_{t}\right) \leq y, W_{T} \geq x\right]=\operatorname{Exp}\left\{\frac{2 \alpha y}{v}\right\}(1-C N D F[x, \alpha+2 y, v]) \tag{18}
\end{equation*}
$$

Example

Given the model assumptions below what is the probability that a Brownian motion that starts out at a value of zero at time zero, falls below some minimum barrier value y over the time interval $[0, T]$, and ends up above some threshold value x at time T ?

Table 1: Model Assumptions

Symbol	Description	Value
y	Barrier value	-0.50
x	Threshold value	-0.25
μ	Annual expected return - mean (\%)	6.00
σ	Annual expected return - Volatility (\%)	35.00
ϕ	Annual dividend yield (\%)	2.50
T	Time period in years (\#)	5.00

Using Equation (2) above the equations for the Brownian motion's mean and variance are...

$$
\begin{equation*}
\alpha=\left(0.0600-0.0250-\frac{1}{2} \times 0.3500^{2}\right) \times 5=-0.13125 \ldots \text { and } \ldots v=0.3500^{2} \times 5=0.61250 \tag{19}
\end{equation*}
$$

Using Equations (17), (18) and (19) above the solution to our problem is...
Answer $=\operatorname{Exp}\left\{\frac{2 \times-0.13125 \times-0.50}{0.61250}\right\} \times(1-\operatorname{NORMDIST}(-0.25,-0.13125+2 \times-0.50, \sqrt{0.61250}, \operatorname{True}))=0.16116$

References

[1] Integral Solutions - Integral Two (Joint Distribution Anti-Derivative), Schurman

